If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35p^2-45p=0
a = 35; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·35·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*35}=\frac{0}{70} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*35}=\frac{90}{70} =1+2/7 $
| 1/2-2x=3x+1/4 | | 12h-4=32 | | (x-13)^2=16 | | 2,576=46(p+20) | | 4(5x+8)+2(x-22)-5=0 | | -12=9x-6x+5 | | 54+(a+5)=32 | | 20/40=3/x | | -2(3x-2)=4(x+1) | | 40/1x=8 | | 6x+16=2x-1+54 | | 5/3x=3=x+7 | | 2,625=25(p+30) | | x=1/213(14+18) | | (2x-10)=(5x+10) | | N.4=12n= | | -8(2-x)=56 | | x-(x*0,007)=9165515 | | 5(a+4)=a-16 | | 3x+2x(8–4)=12 | | 14u-8u=18u | | 14.88+x=17.5 | | 2,639=29(x+25) | | 5(c+1)=15 | | 83=v/3 | | 10p+35=125 | | 2,574=39(x+15) | | -13q+-2q-2=-17 | | x+2x+3+3x-17+25=180 | | 4x^2+12x-96=0 | | -15=4(f-17)+-19 | | 1x+135=1x+55 |